Separating Cycles in Doubly Toroidal Embeddings

نویسندگان

  • Mark N. Ellingham
  • Xiaoya Zha
چکیده

We show that every 4-representative graph embedding in the double torus contains a noncontractible cycle which separates the surface into two pieces. This improves a result of Zha and Zhao for general orientable surfaces, in which the same conclusion holds for 6-representative graph embeddings. Noncontractible separating cycles have been studied because they provide a way to do induction on the genus of a graph embedding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating and Nonseparating Disjoint Homotopic Cycles in Graph Embeddings

We show that if a graph G is embedded in a surface 7 with representativity \, then G contains at least w(\&1)Â2x pairwise disjoint, pairwise homotopic, non-separating (in 7) cycles, and G contains at least w(\&1)Â8x&1 pairwise disjoint, pairwise homotopic, separating, noncontractible cycles. 1996 Academic Press, Inc.

متن کامل

On list vertex 2-arboricity of toroidal graphs without cycles of specific length

The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph‎. ‎A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$‎, ‎one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...

متن کامل

Finding Shortest Non-separating and Non-contractible Cycles for Topologically Embedded Graphs

We present an algorithm for finding shortest surface non-separating cycles in graphs embedded on surfaces in O(gV 3/2 log V + gV ) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V ), this represents a considerable improvement over previous results by Thomassen, and Erickson and HarPeled. We also give algorithms to find a shortest non-contractibl...

متن کامل

Toroidal Embeddings of Right Groups

In this note we study embeddings of Cayley graphs of right groups on surfaces. We characterize those right groups which have a toroidal but no planar Cayley graph, such that the generating system of the right group has a minimal generating system of the group as a factor.

متن کامل

On the flexibility of toroidal embeddings

Two embeddings Ψ1 and Ψ2 of a graph G in a surface Σ are equivalent if there is a homeomorphism of Σ to itself carrying Ψ1 to Ψ2. In this paper, we classify the flexibility of embeddings in the torus with representativity at least 4. We show that if a graph G has an embedding Ψ in the torus with representativity at least 4, then one of the following holds: (i) Ψ is the unique embedding of G in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2003